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ABSTRACT

In this pavr, we develop a set of conditions under which a sequence

is uniquely specified by the phase or samples of the phase of its

Fourier transform, and a similar set of conditions under which a sequence

is uniquely specified by the magnitude of its Fourier transform. These

conditions are distinctly different from the maximum or minimum phase

conditions, and are applicable to both one-dimensional and multi-dimensional

sequences. Under the specified conditions, we also develop several

algorithms which may be used to reconstruct a sequence from its phase or

magnitude. As a potential application area, the results of this paper

are applied to the blind deconvolution problem of digital images blurred

by a symmetric point spread function.
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I. I NTROI)uCT I ON

For both continuous-time and discrete-time signals, the magnitude

and phase of the Fourier transform are, in general, independent functions,

i.e., the signal cannot be recovered from knowledge of either alone.

Under certain conditions, however, relationships exist between these

components. For example, when the signal is a minimum phase or maximum

phase signal both the log magnitude and phase can be obtained from the

other through the Hlilbert transform. This relationship has been exploited

in a variety of ways in many fields including network theory, communications

and signal processing (1,2 ,3J.

In this paper we develop a set of conditions under which a discrete-

time sequence is completely specified to within a scale factor by the

phase of its Fourier transform, without the restriction of minimum or

maximum phase, and propose several algorithms for implementing the

reconstruction of a signal from the phase of its Fourier transform. In

Section II we consider the case in which the phase is specified at all

frequencies, and in Section III the case where the phase is specified at

a discrete set of frequencies. Algorithms for implementing the reconstruction

are developed in Section V. In Section IV, we develop a different set

of conditions, again without the restriction of minimum or maximum

phase, in which a discrete-time sequence is completely specified by the

magnitude of its Fourier transform. In Section VI, we extend the results

of Sections I, 11, IV and V to the case of multi-dimensional sequences

and illustrate an application of the results of this paper to lind

deconvolition.
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It. UNIQUENESS OF A SEQUENCE WITH A PIHASE FUNCTION SPECIFIED AT

ALL FREQUENCIFS

The sequences that we consider are real with rational z-transforms.

Since we are interested in conditions under which the sequence can be

uniquely specified by the phase of its Fourier transform, the Fourier

transform is assumed to converge i.e., the region of con'ergence of the

z-transform includes the unit circle.

For such sequences, we first show that a finite length sequence is

uniquely specified by the phase of its Fourier transform if its z-

transform has no zeroes in reciprocal pairs or on the unit circle. More

specifically, denoting the phase of x[n] and y[n] by Ox (w) and

0 y(w) respectively, we demonstrate the following:

Theorem 1: Let x[n] and y[n] be two finite length sequences

whose z-transforms have no zeroes in reciprocal

pairs or on the unit circle. If 0 x(W) = Oy(W)

for all w, then x[n] = Ay[n] for some positive

constant A. If tan x (w) = tan 0 (w) for all w,

then x[n] = Ay[n] for some real constant A.

To demonstrate the validity of Theorem 1, we note first of all,

that if a finite-length sequence g[n] with z-transform G(z) has a phase

which is zero or 7 for all w, then g[n] is an even sequence, i.e., g[n]=

gf-n], and consequently, if G(z) has a zero at z=zo, then G(z) must also have

I Since we are considering only sequences which are real, zeroes occur in

complex conjugate pairs. In the following discussions, this symmetry is
implicitly assumed, particularly in reference to reciprocal zeroes.

... 2



a zero at z=l/z Now assume that x[n] and yin] both satisfy the conditions

of Theorem 1 and define g[n] as

g In]=x In]*y [-ni] (1)

so that G(z)=X(z)Y(l/z) (2)

If 0x(W ) = 0 y(w) or if tan 0 x(w) = tan 0 y(w), then the phase of g[n]

is zero or 7. Therefore, g[n] is an even sequence. Since the zeroes

of G(z) are collectively the zeroes of X(z) and Y(l/z), if X(zo)=O

then either X(l/zo)=O or Y(zo)=O. However, because the conditions of

Theorem I exclude reciprocal zeroes or zeroes on the unit circle, X(z0)

and X(l/z0 ) cannot both be zero. Thus, if X(zo)=O then Y(zo)=O and

vice versa, i.e., the zeroes of X(z) and Y(z) are identical. Consequently,
2

since g[n] is an all zero sequence,

X (z) =AY (z) (3) a

or x[n]=Ay[n] (3)b

Combining equations 1 and 3b, we have

g[n]=Ax[n]*x[-n] (4)

Since the phase of x[n]*x[-n] is always zero, if 0 x(W) = 0 y(w) then the

phase of g[n] is zero so A must be a positive constant. If tan 0 x(W)

tan 0 y(w) then the phase of g[n] is zero or 7 so A must be real.

An interpretation of Theorem 1 is suggested by the observation that

for a rational z-transform, in general, a zero at z=z 0 and a pole at

z=l/z 0 contribute the same phase but different magnitude to the Fourier

2When we refer to a sequence as an all-zero (all-pole) sequence this
should be interpreted to mean that the z-transform has only zeroes
(poles) except possibly at z=0 or z=-.

3



transform. Thus with phase information alone, there is an inherent ambigui y

in the z-transform in the sense that a zero (pole) at z-z 0 associated with the

original sequence can potentially only be identified from the given phase

as either a :ero (pole) at z=z 0 or a pole (zero) at z=l/z and this

ambiguity cannot be further resolved without additional information or

conditions. The finite length condition in Theorem 1 resolves this ambiguity

by restricting the z-transform to have only zeroes except possibly at z=O

or at z=-. The additional condition that the z-transform have no zeroes

in reciprocal pairs eliminates the possibility of zero phase components

in the z-transform which, of course, could never be recovered from phase

information alone. The conditions in Theorem I also eliminate the

possibility of zeroes on the unit circle. While the Theorem can be

modified to allow for the possibility of zeroes on the unit circle, the

result becomes somewhat more complicated and we have chosen not to

include this additional generality.

Although Theorem 1 requires that x[n] be an all-zero sequence, a

dual to Theorem I can be formulated for an all-pole sequence. Specifically,

let x(n] denote the convolutional inverse of a sequence x[n], i.e.

x[n] * R[n] = 3[n] (5)

Then:

Theorem 2: Let x[n] and y[n] be two sequences whose z-transforms

have no poles in reciprocal pairs, and which

have finite duration convolutional inverses. If 0 ()=
x

0 (w) for all w, then xtn] = Ayn] for some positiveY

constant A. If tan 0 (W) = tan 0 (o) for all o, then
x y

x[n]=AyInj for some real constant A.

4
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Theorem 2 follows directly from Theorem 1. Since the phase of the

Fourier transform of i[nJ is specified by the phase of the Fourier

transform of xln], R[n] is uniquely specified to within a positive

scale factor by the phase of the Fourier transform of x[n], by virtue

of Theorem 1. Then, x[n] is uniquely determined from the reciprocal

of the z-transform of R[n].

In Section IV we will consider a number of numerical algorithms

which can be implemented on a digital computer for reconstructing a

sequence from its phase under the condition of Theoren 1 or Theorem 2.

At this point, however, we discuss a conceptual algorithm which may

potentially have a practical implementation but which, more importantly, serves

to lend insight into Theorem 1 and 2. We outline the algorithm under

the conditions of Theorem 1 since it is easily modified for the conditions

of Theorem 2.

Let 0 x(w) denote the specified phase fuiction from which the sequence
x^

is to be reconstructed and 0 x(w) the associated unwrapped phase (3). From

the conditions of Theorem 1, X(z) is restricted to be of the form

nO N _a l N2

X(z)=Cz k ( ) J2 (1-bkZ) 6)

k=l k=l

with C real, n0 an integer, jakI1, lbkI<l for all k and ak b* for any

k and 1.

Step 1:

The algebraic sign of C is obtained from 0 (w) using the fact thatx

0 x(0) is zero if and only if C is positive (3). The value of n0 in

eq. (6) is obtained from the unwrapped phase as



n=1 7 Vr 0 (U) (7
It X 

From the unwrapped phase function and the value of n obtained in0

Step 1, a new phase function is specified as

Ox(w) 0 x(w) - n w - 0 x(0) (8)

Using the Hilbert transform, a minimum phase sequence x min[n] can be

specified which has the phase 
0 x (w). The z-transform Xmin (z) of x mi n [ n]

is given by (3,4)

N1
IT (l-akz )k=l

X (z)= (9)
min N2 * -1

11 tl-bk  z
k=l

where the coefficients ak and bk are identical to those in eq. (6).

Since pole-zero cancellations cannot occur in eq. (9) by virtue of the

condition in Theorem I which implies that ak$ b£ for any k or Z, the coefficients ak

in eq. (6) can be obtained from the zeroes of X min (z) and the coefficients

b,, and thus bk in eq. (6),can be obtained from the poles of Xmin(Z).

The condition in Theorem 1 that there are no zeroes in

reciprocal pairs ensures that there are no pole-zero cancellations in eq.

(9). If the original sequence has reciprocal zeroes, then the algorithm

above may still be applied to recover all but those zeroes in X(z)

which are in reciprocal pairs.

6
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In lhcorems I and 2 we assumed that the phase function was specified

at all frequencies. A similar set of Theorems can be stated if the phase

is specified at a sufficient number of discrete frequencies. As in

Section II we assume the sequences are real with rational z-transforms

with a region of convergence that includes the unit circle.

Then:

Theorem 3: Let x[n] and y[n] be two finite length sequences

which are zero outside the interval O<n<N-1 with

z-transforms which have no zeroes in reciprocal

pairs or on the unit circle. If 0 (x(W) = 0 y(W)

at (N-i) distinct frequencies greater than zero

and less than nthen xjnj = Ay~n) for some

positive constant A. If tan 0 x(w) = tan {2)

at (N-1) distinct frequencies greater than zero

and less than T, then x[n] = Ay[n] for -'mc real

constant A.

The validity of Theorem 3 follows in an almost identical manner

to that of Theorem 1. Specifically, consider a finite length sequence

g[n] for which g[n]=0 outside the interval (-N+I)<n<(N-l). Let
(; () = G j( ) a )

G(w) =I G (w)Ie g denote the Fourier transform of g[n] with 0 (w)g

zero or 7 at N-1 discrete frequencies W ,W2 .... ,WN_1 between w=0 and

W=T, i.e.,

3More generally, xin] need only be zero outside any finite interval
of length N. This added generality, however, is not considered in
order to simplify the following discussions.
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0 (W k)=O or Itor K:1,...N- (lOJa

with wk  Wt for kxf (.'0b

and O<Uk<,< for k=l...,N-1 (10)c

Then, G (Wk is real and

N-1

Ini[(W(k) = T g[n] sin nw =0 (11)
n=-N+l

Or, equivalently

N-1
Z g[n]-g[-n]} sin nwk=0 k=1,2...N-1 (12)
n=l

0<Wk <IVTO<k<

Equation (12) implies that (5)

[g[n]-g[-n]] =0 n=l .... N-1 (13)

i.e., g[n] is an even sequence. Now, consider two sequences x[n] and

y[n] satisfying the conditions of Theorem 3 and having the same phase at

(N-i) distinct frequencies between zero and T. As with Theorem 1, we

form the sequence

g[nj=x[n]*y[-n] (14)

Since g[n]=O outside the interval (-N+)<n<(N-1) and Og(Wk) satisfies

eqs. (10), then g[n] is an even sequence. For reasons identical to

those used in justifying Theorem 1, it then follows that

x[n]=Ay[n] (15)

where A is a p-ritive constant if the phase samples of x[n] and y[n] ar,

equal and a real constant if tangents of the phase samples are equal.

Although Theorem 3 requires that x[n] be an all-zero seouence, a

dual to Theorem 3 for an all-pole sequence is easily formulated in terms

of the convolutional inverse. Specifically:

L8



Theorem 4: Let x(n] and y[n] be two sequences whose z-transforms

have no poles in reciprocal pairs, and which

have convolutional inverses that are zero outside the

interval O<n<N-1. If 0 (w) = 0 (w) at (N-i) distinct
-- x y

frequencies greater than zero and less than 7T then x[n] :

Ay[n] for some positive constant A. If tan 0x(w) x
tan 0 (w) at (N-i) distinct frequencies greater than

Y

zero and less than 7r, then x[n]=Ay[n] for some real

constant A.

Theorem 4 follows from Theorem 3 in the same manner that Theorem 2

follows from Theorem 1.

It should be noted from Theorem 1, that if the phase is specified

at all frequencies, then the interval outside of which the sequence is

zero need not be known whereas from Theorem 3, if the phase is specified

at N-1 frequencies then this interval must also be specified. In both

cases, except for a positive scale factor, the phase in the case of

Theorem I or phase samples in the case of Theorem 2 uniquely specify a

sequence within the class of sequences which have no zeroes in reciprocal

pairs or on the unit circle. However, if the additional constraint that

x[0O0 is included in the conditions of Theorem 3, then as we now show,

the phase samples uniquely speicify a sequence within a broader class of

sequences. Specifically:

Theorem 5: Let x[n] be a sequence that is zero outside the

interval O<n<N-1 with x[0]O0 and which has a

z-transform with no zeroes in reciprocal pairs

or on the unit circle. Let y[n] be any sequence

9



w'hich is -ero outside the interval O<n<N-1. If

V J(x (wn) at (N-I) distinct frequencies greater I
than zero and less than ii, then y[n]=Ax[n] for i
some positive constant A. If tan 0 () = tan 0 (W)J

y "

at (N-I) distinct frequencies greater than zero and

less than n, then x[n]=Ay[n] for sonic real constant A.

To demonstrate the validity of Theorem 5, we first form the sequence

g~nJ=x~nJ*y[-n]. As discussed in Section 111, since g[n]=0 outside

the interval (-N+I) <n< (N-1) and satisfies equation (10), g[n] is an

even sequence. Now let N- represent the location of the last non-zero

point in x[nj, i.e., x[n]=0 for n>N 1 and x[N l1] O. Then

N1-1 N-1

G(z) = X(z)Y(z = X x[n]z -n 7 y[n]z (16)
n=O n=O

Since g[n] is even and x[O]$O, y[n]=O for n>N1 so that the number of

zeroes of y(n] is less than or equal to the number of zeroes of x[nl.

Now, for reasons identical to those used in justifying Theorem 1, if

g[n] is an even sequence and if x[n] has no zeroes in reciprocal pairs,

then for each zero of x[n], y[n] must also have the same zero. Even

though y(n] is not restricted to the class of sequences with no zeroes

in reciprocal pairs or on the unit circle, from our previous result,

y[n) cannot have more zeroes than x[nI, and therefore, y[n]=Ax[n].

For reasons identical to those used in justifying Theorem 1, A is a

positive constant if the phase samples of x[n] and y[n] are equal

whereas A is a real constant if the tangent of the phase samples are

equal.

10
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Although Theorem 5 requires that the sequence he an all-zero

sequence, a dual to Theorem 3 for all all-pole sequence is easily

formulated in terms of the convolutional inverse. Specifically:

Theorem 6: Let x[n] be a sequence whose z-transform has no

poles in reciprocal pairs or on the unit circle,

and whose convolutional inverse is zero outside

the interval O<n<N-1 and non-zero at n=O. Let

yjnj be any" sequence whose convolutional inverse

is zero outside the interval O<n<N-1. If 0 (M)=
- - y

0 x(w) at (N-1) distinct frequencies greater than

zero and less than n, then y[n] = Axrn] for some

positive constant A. If tan 0 y(w)=tan 0 x(w) at

(N-1) distinct frequencies greater than zero and

less than 7, then x[n]=Ay[n] for some real constant A.

Theorem 6 follows from Theorem 5 in the same manner that Theorem 2

follows from Theorem 1.

IV. UNIQUENESS OF A SEQUENCE WITH A SPECIFIED MAGNITUDE FUNCTION

In Section II, several sets of conditions are presented which

establish a uniqueness between a sequence and its phase function.

Unlike the case for minimum or maximum phase sequences, there is no

dual statement of uniqueness between a sequence and its magnitude

function under the same set of conditions. However, under a different

set of conditions a sequence is uniquely specified to within a sign and

a time shift by the magnitude of the Fourier transform. The conditions

are embodied in the following Theorems:

.kI_



Il'hcorem 7: Let x[it and )y hi be two sequences whose z-trans forms

cont am no reciprocal pole-zero pairs and

which have all polu-, not at Z=., inside the unit

circle and all ztroes, not at z:1), outside the unit

circle. 11' tihe magnitudes of the FouriCr transforms

of x[n I and y[n] are equal then xlnj = + yljn+mil for

some integer ill.

.\ dual to this Theorem is:

Theorem 8: Let x[n] and y[n] be two sequences whose z-transforms

contain no reciprocal pole-zero pairs and

which have all poles, not at z=O, outside the unit

circle and all zeroes, not at z=-, inside the unit

circle. If tile magnitudes of the Fourier transforms

of x[n] and y[nI are equal then x[nl = + ytn+ml for

some integer m.

Since the justification of Theorem 7 is almost identical to that of

Theorem 8, we will focus only on the first. The validity of Theorem 7

is suggested by noting that a zero (pole) at z=z 0 and a zero (pole) at

z=l/z 0 contribute the same magnitude to the Fourier transform. Therefore,

with magnitude information alone, there is an inherent ambiguity in the

specification of tile sequence in that a zero (pole) of the original

sequence can potentially only be identified from the magnitude as either

a zero (pole) at z=. 0 or at z=l/z O. In Theorem 7 this ambiguity is

resolved by restricting the poles to lie inside the unit circle and tle

zeroes to lie outside while in Theorem 8, tile condition is the reverse.

The additional condition that there are no conjugate reciprocal pole-zero

12



pairs eliminates the possibility of all -pass term,, which contribute only

to the phase and not the magnitude.

To more formally demonstrate Theorem 7, we define the set of

sequences C to consist of all sequences x[n] which satisfy the conditions
ni

of Theorem 7 so that their :-transform are restricted to be of the form

N1I

1I (1-a ZJ
k=l

X(z) = Czno (17)
P-

IT (1-bk z-)
k l

with ak# b for any k and ?, and where C is a real constant, no is an
Z 0

integer, and Jakl<l, ibk1<1 for all k. Now consider two sequences

x[n] and y[n], both in the set Cm, with z-transforms X(z) and Y(z)

respectively. We wish to show that if X(z) and Y(z) both have the same

magnitude on the unit circle then xfn]=+y[n+m] for some integer m.

Consider G(z) defined as the ratio X(z)/Y(z). Since X(z) and Y(z) both

have the same magnitude on the unit circle, G(z) must be entirely all-pass

with unity magnitude, i.e., for a zero at z=z 0 there must be a pole at

z=l/z 0 and vice versa. Therefore, G(z) consists only of poles and/or

zeroes at z=O or at z=- and conjugate reciprocal pole-zero pairs.

Because of the conditions in Theorem 7, this in turn requires that for

any zero (or pole) of X(z) at z=z 0 there must be a zero (or pole) of

Y(z) at z=l/z 0 which, for z0 # 0 or -, violates the conditions in

Theorem 7 since one will always be inside and the other outside the

unit circle. Thus, G(z) must be of the form

13



G(z) = + zm (18)

or, equivalently,

x[n]=+ y[n+m] (19)

for some integer m.

A conceptual algorithm similar to that considered in Section II

can be developed for reconstruction of a sequence to within an algebraic

sign and a delay from the magnitude of its Fourier transform under the

conditions of Theorem 7 or Theorem 8. We outline the procedure below

under the conditions of Theorem 7. It is easily modified for the

conditions of Theorem 8.

Let IX(w)l denote the specified magnitude function. Using the

Hilbert transform, a minimum phase sequence xmin[n] can be specified

which has the same magnitude function. The z-transform X min (z) of

Xmin [n] is given by N1

11 (1-akz - )

Xmin (z) = IcI k=l (20)
P-1
RI (l-b kz
k=l

i.e., it has the same poles as X(z) and the zeroes are reflected inside

the unit circle. Since the conditions of Theorem 7 exclude the

possibility of pole-zero cancellation, the coefficients ak, and thus

ak in eq. (17),can be obtained from the zeroes of X min (z) and the

coefficients bk in eq. (17) can be obtained from the poles of X min(z).

14



Pr
V. NUMERICAL ALGORITHMS FOR RECONSTRUCTION FROM SAMPLES OF A

PHASE FUNCTION

In Section II, we presented two sets of conditions, embodied in

Theorems 1 and 2, under which a sequence is uniquely specified to

within a positive scale factor by the phase of its Fourier transform.

In this section, we describe two numerical algorithms which can be used

to reconstruct a sequence satisfying the requirements of Theorem 1 from

samples of its phase function when the location of the first non-zero

point of x[n] is known. Although these algorithms will only be discussed

in terms of reconstructing sequences satisfying the conditions of Theorem 1,

the reconstruction of sequences meeting the requirements of Theorem 2 may

be accomplished by simply reconstructing the finite length sequence i[n]

defined in eq. (5) using the negative of the specified phase samples and

then computing the convolutional inverse sequence.

The first algorithm presented below is an iterative technique in

which the estimate of x[n] is improved in each iteration. This algorithm

has been developed by slightly modifying an iterative technique proposed

by Quatieri (6) for reconstructing a minimum phase or maximum phase

sequence from its phase function. The second algorithm is a closed form

solution which is obtained by solving a set of linear equations. Under

the conditions specified in Theorem 1, this algorithm provides the desired

sequence x[n] to within a scale factor when the location of the first

non-zero point of x[n] is known.

In the discussions which follow, x[n] is used to denote a sequence

which satisfies the conditions of Theorem I and is zero outside the

interval O<n<N-1 with x[0] O. In the more general case (see Footnote 3),

a linear phase term may be added to the given phase to accomplish this.

15



A. Iterative Algorithm

The -point discrete Fourier transform (DFT) of x[n] will be denoted

as

X(k) = IX(k)I eJox(k) (21)

where it s assumed that M>2N. Then, an iterative technique to reconstruct

the sequence x[n] from the M samples of its phase, x(k) k=0,l,...,M-l, is

as follows:

Step 1:

We begin with IX0 (k)I, an initial guess of the unknown DFT magnitude

and form the first estimate, XI(k), of X(k) using the specified phase

function, i.e.,

X1 (k) = IXo(k) lej
0 x(k) (22)

Computing the inverse DFT of XI(k) provides the first estimate, xl[n],

of x[n]. Since an NI-point DFT is used, xl[n] is an N-point sequence

which is, in general, non-zero for N<n<M-1.

Step 2:

From xl[n ] , another sequence, yl[n], is defined by

, [n] =xl[n] O<n<N-1y 1 [in](23)

N<n<M-I

16



Step 3:

The magnitude IYI(k)I of the M-point DlT of yI[n] is then considered

as a new estimate of jX(k)j and a new estimate of X(k) is formed by

X2(k) = IY1(k) IeJOx(k) (24)

From this, a new estimate x2[n] is obtained from the inverse DFT of

X2 (k). Repetitive application of steps two and three defines the

iteration.

In this iterative procedure, the total squared error between x[n]

and its estimate is non-increasing with each iteration. To see this,

let X [n] denote the estimate after the rth iteration and define the

error, Er, as

M-1 2
E= E [x[n]-x r[n]] (25)Er n=O I

From Parsevals's theorem,

1 M-1
Er =M IX(k)-Xr (k)eJx 6)I

k=O

M-1

EM F. X(k)-Iy,_- l(k) leJ x k) (26)

k=O

Since 0 x(k) is the phase of X(k), then

22

IX(k)-IY r-I (k)I eJOx (k), 2 <IX(k)-Yr~ (k)l (27)

with equality if and only if 0 x(k)=Or-l(k ) where 0r-l(k) is the phase

17



of r Lk) Lombining eq. L26) and (27) gives

rN--

Ni- 1 2
I: < I ",
r K i , IX(k)-Y r-l(k)

k=(

or, with Parseval's theorem:

E < Z nn]-v'r n I (28)
r - L=0

Since

Yrl[n] = Xr-l n] for 0 <n <N-1

Yr-l[n] = x[n]=0 for N <n <-1

then, N1 [-2 ]2l{
T [n]- Yr-l n] < E ln]-x ln] =E (29)

n=O n=OI

with equality if and only if yr-l [I] = x r[n]. Therefore,

E < E (30)r - r-1

Although eq. (30) is not sufficient to guarantee the existence

of a converging solution, if xjn] is a converging solution then x[n]=

Ax[n] with A > 0. To show this, we note that the equality in equation (30)

holds if and only if 0 (k)=O (k) from equation (27) and if and only if

Yr-l[nl=X rl I'n from eqIlation (29). Therefore, if the algorithm converges, then

18



the convergent solution x[nl is zero outside the interval O<n<N-1 and
I IU

has the same phase samples as xInj at w = 7[- k for k=0,1. . -1. Since
NI

I>2N, there exist at least N-1 distinct values of w in the interval

0,w<( at which (9 (W) equals O(u). Then from Theorem 5, x[n]=Ax[n] forx x

some positive constant A.

It is not yet known if this iterative procedure always leads to a

converging solution. However, in all the examples that we have considered

so far, we have empirically observed that the algorithm converges to the

correct solution when N1>2N and that the number of iterations required to

achieve a small total squared error is, in general, quite large. We have

also observed that increasing NI may increase the rate of convergence of

the algorithm, but such an increase obviously results in an increase in

the number of computations required for each iteration.

Two examples of the iterative procedure applied to a mixed phase

sequence, x[n], of length 8 are shown in Table 1. In the first example

an FFT of length 16 was used. In the second example, the FFT length was

extended to 128 points. In both cases, the initial guess of the unknown

magnitude was chosen to be a constant, and the scaling factor A was

chosen so that the resulting sequences have the same value at the origin

as x[nj. The results after 10, 100, 500, and 1000 iterations are presented

along with the values of the total squared error.

B. Closed Form Solution
4

A closed form solution for reconstructing a sequence x[n] from

samples of its phase, OX (w), follows from the definition of 0 x(w). With

(0 (w) defined so that -T< 0 (w) < U, we havex - x

4A closed form solution similar to the one presented in this section
can be obtained by expressing the real and imaginary parts of X() in
terms of the given phase and then relating the real and imaginary
parts through the discrete Hilbert transform relations for causal sequences.
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N-I
-Z X[njsin nl

tan l l .) =  (31)

N-1
Z x~nicos n

yor the case in which 0 (W)=+Tr/2 so that tan 0 (w)=+-, eq. (31) is
X - x -

equiv'alent to:

N-1
1 xln' cos nw = 0 (32)

n= 0

Sampling tan x (w) at N-I distinct frequencies w1 ,w 2 .... with

0 < W < Ir for k=1,2, ...,N-1, eq. 31) and (32) can be written as:

N-I1
Z x[n] os nwk tan 0 x(wk) + sin nwkj (33)a
n=l xc

= -x[O] tan 0x (Wk) if 0 x k)+

2

N-I
Z x[n] cos nw = -x[O] if Ox(wkI= +  (

n=l -2

for k=l,2,...N-1. Equation (33) represents (N-1) linear equations

in the (N-i) unknowns of x[n] ard can be expressed in matrix form as;

S x = x[0]b (34)

where x represents the vector of elements of x[n] excluding the first

element of the sequence, x[0]. Any solution sin], to eq. (34) has the

property that s[n] is zero outside the interval O<n<N-1 and has the same
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tangent of the phase as xtn] for N-I distinct frequencies between zero

and ri. Thus, from Theorem 5, we conclude that ![jnj=Ax[nI for some

real constant A. Therefore, there is only one independent solution to

eq. [34-. This implies that S -
, the inverse of the matrix S, exists

and that x[n] is given by

x = AS (35)

for some real constant A. To specify x[ni to within a positive scale

factor, we first assume that A>O and determine the phase of -. in eq. (35).

If the resulting phase does not differ from 0 x(w), then A is positive.

Otherwise, A is negative.

In reconstructing x[n] from 0 (a) using eq. (35), it should be
x

noted that we have some control over the matrix S. Since the elements

of the matrix S are functions of the samples of 0 x(), S can be changed

by choosing a difterent set of frequency samples. This control over S

may be useful in avoiding those frequency samples for which tan 0 x(W) is

very large or in avoiding potential numerical instabilities in computing

-1
the inverse matrix S

Compared with the iterative algorithm, the closed form solution

presented above has the advantage that the desired sequence is guaranteed

to be the solution to eq. (34) and, in addition, no iterations are

required in order to reach a solution. On the other hand, equation

(34) requires computing the inverse of an (N-l)x(N-l) matrix which may

lead to numerical problems and severe round-off errors, particularly as

N becomes large.

The algorithm discussed above has been applied to a variety of

different examples. Consistent with our theoretical results, in all

t. .



examples we have considered, the desired solutions have been obtained.

Specifically, for the sequence shown in Table 1, the closed form solution

was used to reconstruct the sequence from its phase. The phase samples

used to define the matrix S were first chosen to be equally spaced

between zero and 7T, and then were randomly selected within the interval

zero to , . Within the limits of finite precision arithmetic, in 'ucth

cases the sequence was reconstructed exactly when the scaling factor was

chosen so that the solutions obtained had the correct value at the

origin.

VI. EXTENSION TO MULTI-DIMENSIONAL SEQUENCES

In this section, we extend the results of Sections II, III, IV and

V to the case of multi-dimensional sequences. This extension is achieved

by mapping a multi-dimensional sequence into a I-D (one dimensional)

sequence and then applying the results for I-D sequences. Since the

extension of the 2-D case to sequences of higher dimension is straight-

forward, our discussions in the section will concentrate on the 2-D

case. Again, we consider only sequences which are real, have rational z-

transforms, and have Fourier transforms that converge.

Let x[nl,n 2] represent a 2-D sequence which has a rational z-

transform with X(w1, 2 ) given by

X(iW 2 ) = A(w 1 2 ) (36)

B(w I ,u 2 )

where A(www2) is a 2-D polynomial of degree M1 in exp[JW and M2 in

exp[jw 2 ] and where B(w1 ,.2 ) is a 2-D polynomial of degree N1 in exp[iw 1]

and N 2 in exp[jw 2]. Suppose we form a 1-D sequence xl[n] or x2 [n] by

"x1 [nJ = E x[m,n-Nm] (37)a
In= _o0
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or x[nJ = Z x[n-Mmj] (37)b

whe re Nt > max(Nl ,N 1 ) and N > max(l2,N,) Then it can be shown (7,8)

that the transformation in equation (37) is invertible and that

X (W)  X(wl,W2) (38)a
l=wN, w2=w

and X'(uW) X(wlu,w) (38)b
- ~" Wl=' Wo2 = a

From equation (38), it is clear that the phase of xlinj or x2 [n] is

specified by the phase of x[n1 ,n 2 ] and the magnitude of xI[n] or x2 [n ]

is specified by the magnitude of x[n 1 ,n2]. Therefore, all the theorems

and numerical algorithms developed in Secitons II, 111, IV and V for 1-D

sequences may be extended to 2-D sequences by first transforming them

into 1-D sequences using equation (37) and then applying the l-D results

to the resulting 1-D sequences. Thus, for example, Theorem 1 may be

extended to 2-D sequences as follows: Let x[n1 ,n2 ] and y[nl,n 2] be two

2-D sequences such that the two 1-D sequences x[n] and y[n] obtained

from transforming x[nl,n2] and y[nl,n 2 J using equation (37) are finite

in length and have no zeroes in reciprocal pairs or on the unit circle.

If ( x(u)l,W2) = Oy,(Wl,) for all 1 and 2' then x[nl-,n2=Ay[nl,n 2 for

some positive constant A. If tan 0x (wl, 1 2 ) = tan Oy(W,W 2) for all

1 and w 2' then x[n 1 ,n2]=Ay[n,n 2J for some real constant A.

If x[nlln2] is a 2-D sequence with finite support, then the transformation

given by equation (37) can be reduced to a simpler form. Specifically,

let x[n 1 ,n 2] be zero outside the region O<nl<Nl-l and O<n <N 2-1 Then

equation (37) can be rewritten as
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x1 [1 N+n 2 ] = x[n,n 2  with N>N 1  (39)a

or x[n 1 lu+,M] = x1n1 ,n 9 ]J with M>N 2  (39)b

Clearly, the transformation in equation (39) is invertible and it can be

easily shown (8) that X1 (w) and X2 (w) are given by equation (38).

As an illustration of the results of this section, a 2-D sequence

representing the intensity of an image, xlnl,n 2 ], was created which is

zero outside the region O<n <11 and O<n2<11. From the phase of XIM

defined by equation (38)a with N=12, the closed form solution was used

to reconstruct x[nl,n2 ]. With the scale factor chosen so that the

reconstructed image had the same value at the origin as x[nl,n 2 ], the

result, shown in Figure 1, is indistinguishable from the original. For

illustration, the image shown has been enlarged by means of a zero-order

hold.

Finally, we present another example which illustrates a potential

application of the results of this paper to blind deconvolution. In

irage processing, a model which frequently arises to describe image blur

in the absence of noise is:

Y[nl,n2] = x[nl,n 2] * hjnl,n 2] (40)

where x[nl,n 2 ] is the original unblurred image and h[n 1,n2 ] is a (real)

symmetric 2-D sequence, i.e., h[nl,n 2] = h[-nl,-n 21 . This model may be

used, under the appropriate band-limited assumptions, to account for

uniform motion blur, severely defocussed lenses with circular aperature

stops, and long-term exposure of atmospheric turbulence [9]. In the

context of blind deconvolution, the desired objective is to recover

x[nl,n 2 1 in eq. (40) from the blurred image y[nl,n 2] with no detailed

25
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knowledge of hHn,n 21, Iowever, if htnl,n21 is known to be symmetric,

one possible approach to the deconvolution of eq. (40) is suggested by

the results of this section and section V. Specifically, let x[n 1,n2]

denote an original unblurred image and h[ni, n2 i a symmetric point spead

function. With yn,n,I representing the blurred image as expressed by

equation (40), define the coordinate system for yIn 1,n2 ] in such a way

that yv[nl 1,n 2J is zero outside the region 0,-n NI- I and )n2 <N2 -. Since

1h[11n)] is synunctric, its phase is zero or 7 for all w1 and Lw2
1~n 2

Therefore,

tan Oy(w,W2) = tan 0 xUil,')2 (41)

y ^

for all w and w". Suppose there exists a sequence xl[n ] or x,[n ]

defined by equation (39) which satisfies the conditions of Theorem 3

and that the location of the first non-zero point of this sequence is

known. To simplify the following discussion, we denote this sequence

simply by x[n] and define the sequences y[n]and hin] by performing the

same transformation on y[nl,n 2 ] and h[n 1,n2] that is used to obtain

x[n]. From the results of (8),

y[n] = x[n] * h[n] (42)

and therefore, it follows from equations (38) and (41) that

tan 0 (w) = tan 0,(W) (43)

for all w. Since the location of the first non-zero point of x[n] is

assumed to be known, by adding the appropriate linear phase to 0,(W),
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rig.1. Imago reconstruction from phase information.
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Fig.I. Image reconstruction from phase information.
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the corresponding sequence, i[n], satisfies the conditions of Theorem 5,

i.e., x[n] satisfies the conditions of Theorem 3 with R[0]0. Consequently,

the closed form solution given by equation (35) specifies x[n] to

within a scale factor from samples of its phase or, equivalently, from

samples of the phase of y[nl,n 21. Therefore, since equation (39) represents

an invertible transformation, x[nl,n 2] can be recovered from R[n] and

knowledge of the location of the first non-zero point of x[n].

Since it is unreasonable to assume that the location of the first

non-zero point of x[n] is always known, we outline one possible precedure

for finding this point from y[n] which is given by equation (42).

Specifically, with yin] equal to zero outside the interval 0<n<N-l,

suppose we assume that x[O]J0 and proceed to solve equation (34) for the

vector x using (N-1) samples of 0 (w ). Then, it is easy to show that

the (N-1) x (N-1) matrix S in equation (34) is singular if x[O]0.

More importantly, however, it can be shown that n0 , the location of the

first non-zero point of x[n], is related to the rank of S by:

n = (N-1) - rank[S] (44)

Therefore, suppose we are given the 2-D sequence y[nl,n 2 ] in equation

(40) with y[nl,n 2 ] taken to be zero outside the region <nl<Nl and

0<n2<n 2-1. Then, if xl[n ] or x2 [n] satisfy the conditions of Theorem 3,

equation (44) may be used to determine the location of the first non-

zero point of xI[n] or x2 [n]. With this information, equation (34) may

be solved to recover xI[n] or x2 [n] to within a scale factor from Sy(wlw2).

Then, performing the inverse of the transformation given by equation

(39), x[n 1 ,n2] can be reconstructed to within a scale factor.
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An example which illustrates the results of this section to blind

deconvolution is shown in Figure 2. The image in Figure 2a has a

support of 1 pels x l pels which, for illustration, has been enlarged

using a zero-order hold and represents the original image, x[nl,n 21 ,

which has been blurred by a symmetrical 2-1) sequence in ln2j as in

eq. (40). After determining the support of h[n 1,n21] from the blurred

image using a variation of the procedure outlined above for determining

the location of the first ion-zero point of x 1 [n] or x 2 fnJ, the image

shown in Figure 2b was obtained from the closed form solution. Within

the finite precision of digital computation, the reconstruction is exact.

Although the iterative technique may also be used in blind deconvolution,

it has an important limitation as compared to the closed form solution.

Specifically, the iterative algorithm requires that the phase of the

blurred image be identical to the phase of the original image as opposed

to the tangents of the phase being equal as required in the case of the

closed form solution. This, in turn, restricts the blurring function

h[nl,n 2 J, to be zero phase.

Although we have presented one possible approach to blind deconvolution

when the degrading function is symmetric, it does not constitute a

general solution to the problem of blind deconvolution since, in practice,

eq. (40) is only an approximation. More generally, a blurred image is

given by

y[nl,n I = lx[nl,n2] * h[nl , n9 ]} w[nl,n + v[nl,n,] (46)

where v[nl,n 2] is additive noise and w[nl,n 2] is a window function. The

sensitivity of our proposed deconvolution technique to the approximation

in eq. (40) as well as possible extensions to the more general case in

eq. (46) are currently under investigation.
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